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Abstract

The computational processes in the intermediate stages of the ventral pathway responsible for visual object
recognition are not well understood. A recent physiological study by A. Pasupathy and C. Connor in
intermediate area V4 using contour stimuli, proposes that a population of V4 neurons display object-
centered, position-specific curvature tuning [18]. The “standard model” of object recognition, a recently
developed model [23] to account for recognition properties of IT cells (extending classical suggestions
by Hubel, Wiesel and others [9, 10, 19]), is used here to model the response of the V4 cells described in
[18]. Our results show that a feedforward, network level mechanism can exhibit selectivity and invariance
properties that correspond to the responses of the V4 cells described in [18]. These results suggest how
object-centered, position-specific curvature tuning of V4 cells may arise from combinations of complex
V1 cell responses. Furthermore, the model makes predictions about the responses of the same V4 cells
studied by Pasupathy and Connor to novel gray level patterns, such as gratings and natural images. These
predictions suggest specific experiments to further explore shape representation in V4.
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1 Introduction

Many physiological studies have shed some light on
the ventral stream in primate visual cortex [4, 11, 31],
but most computational issues have yet to be resolved.
Cells in the early stages of the ventral pathway have
small receptive fields and are selective to simple fea-
tures, such as edge orientation [1, 8], while cells far
along the pathway in inferotemporal cortex (IT) have
large receptive fields and are selective to complex ob-
jects like faces and hands [2, 7, 14, 20, 30]. The general
selectivity at these two stages of the ventral pathway
is relatively well understood. However, cells at inter-
mediate stages, between V1 and IT, have not been fully
characterized.

In one recent study of V4, Pasupathy and Connor
[18] investigated the nature of shape representation in
V4 cells of the primate ventral pathway. Building on a
previous study [17] in which they found tuning in V4
cells to angle orientation, Pasupathy and Connor ex-
amined shape representation of V4 cells using a set of
simple closed shapes formed by combining convex and
concave boundary elements [18] (see Figure 2). They
characterized a subpopulation of V4 cells as having se-
lectivity for object-centered position-specific boundary
conformation, such as cells that were tuned to multi-
ple curvatures at specific angular positions from the ob-
ject’s center of mass.

In this paper we report that the “standard model,”
a recently developed computational model of object
recognition [23], can reproduce the quantitative data
described by Pasupathy and Connor in [18]. Model
units can display the same object-centered, position-
specific curvature tuning measured by Pasupathy and
Connor in a subpopulation of V4 cells. These model
units represent a translation invariant combination of
complex Vl-like subunits that may be described as
“curvature filters.” These results suggest that V4 selec-
tivity is a result of the combination of complex V1 cell
responses. Furthermore, the model can make quanti-
tative predictions, yet to be verified, of how cells mea-
sured by Pasupathy and Connor will respond to novel
stimuli. Such predictions can provide the basis for fur-
ther experiments to explore shape representation in V4.

1.1 Physiological Results

There have been many experiments in intermediate
area V4 using a variety of stimulus sets [3, 5, 6, 22], but
none has been able to fully characterize V4 selectivity.
In one attempt to describe V4 cell shape representation,
Pasupathy and Connor systematically combined con-
vex and concave boundary elements to produce simple
closed shapes with shared boundary components [18].
They then quantified the raw responses of prescreened
V4 cells to the stimulus set using Gaussian functions in
a number of tuning domains: boundary conformation,
edge orientation and axial orientation. Gaussian func-

tions fit in the boundary conformation space (specifi-
cally, curvature x angular position from the object cen-
ter) were found to best characterize V4 responses. Pa-
supathy and Connor concluded that these results, “sug-
gest a parts-based representation of complex shape in
V4, where the parts are boundary patterns defined by
curvature and position relative to the rest of the object.”
[18]

2 Methods

2.1 The Standard Model

The standard model combines many data about the
ventral stream [9, 10, 19] into a hierarchical computa-
tional model of object recognition [23-25]. The two ba-
sic cognitive requirements of object recognition, invari-
ance and specificity, are evident at the earliest and high-
est stages within the ventral stream. Within the ear-
liest stages, recordings in cat striate cortex using ori-
ented bars show that simple cells display strong phase
dependence, while complex cells display tuning that is
independent of phase [9]. Hubel and Wiesel proposed
that the invariance of complex cells could be created by
pooling together simple cells with similar selectivities
but translated receptive fields [10]. Perrett and Oram
proposed a similar mechanism within IT [19], the high-
est layer of the ventral stream, that described invariance
to any transformation as pooling over afferents tuned to
transformed versions of the same stimuli. Riesenhuber
and Poggio extended these proposals in a quantitative
model to describe the mechanisms that achieve invari-
ance and specificity throughout the ventral stream [23].

The resulting model is a hierarchical framework that
consists of units analogous to simple and complex cells
in V1, and leads to view dependent and view invariant
neurons analogous to IT cells. The model layers are or-
ganized to mirror the layers from V1 to IT in the ventral
stream and can be extended up to prefrontal cortex [25].
The view-based module leads to complex feature selec-
tive units that are scale and translation invariant [23].
Through the layers of the model, increasingly complex
feature representations are achieved by combining in-
termediate features using template matching Gaussian
transfer function (see Appendix A.1). Scale and trans-
lation invariance are achieved by using a max-pooling
operation over similar features with different scales and
translations.

Tuning within the model can generally be inter-
preted as representing a conjunction of non-linear fil-
ters that is translation invariant within a unit’s receptive
field. Simulations using the methodology of Pasupathy
and Connor in [18], show that units within the stan-
dard model correspond to V4 cells and exhibit object-
centered, position-specific boundary conformation tun-

ing.



2.2 Model Implementation

The model used in this paper is an extension of original,
simplified version described by Riesenhuber and Pog-
gio [23] in three ways: the combination of afferents by
S2 units is less rigid, S2 units are tuned to a target stim-
ulus (possibly by learning, see [29]), and the C2 layer
pooling range is set to match the invariance properties
of a V4 cell. These changes are natural (and planned,
see [23]) extensions of the original model. They were
made possible in a quantitative way as a consequence
of the results found by Pasupathy and Connor in [18].
In this paper we will refer to S2 and C2 units that incor-
porate these changes. A comparison of the new units to
the original model units is presented in Appendix A.2.

The present version of the model, as used here, is
shown in Figure 1 and consists of five layers: S1, Cl1,
S2, C2, and VTU. The 'S’ layers perform the template
matching function and the 'C’ layers perform the max-
pooling operation. The S1 layer units perform a con-
volution on regions of the raw input image using Ga-
bor filters at different orientations and sizes. The entire
population of S1 units represents a convolution map of
Gabor filters of different sizes and orientations with the
entire raw image.

The C1 layer performs a max-pooling operation on
the S1 convolution maps of the same orientation. The
max-pooling function provides some scale and trans-
lation invariance that is characteristic of complex cells
in V1. S2 units perform Gaussian tuning in a multi-
dimensional space created from the outputs of C1 units.

In general, we expect a variety of cells tuned in dif-
ferent ways within V4, possibly by a process of passive
learning based on visual experience. In this study we
created specific units by the following procedure. S2
units are tuned to a particular set of C1 inputs with a
Gaussian function. A target stimulus is presented to the
model and the outputs of the C1 layer form the center
of the 52 Gaussian tuning function. Feature tuning may
be considered as a type of learning in that the S2 unit
learns an optimal input pattern. This method is a depar-
ture from the hard-wired tuning of the original model
[23]. A similar method follows the original intents of
the model and was in fact used recently to successfully
recognize objects in real world settings [28, 29].

The S2 units were tuned to a target stimuli taken from
the main stimulus set, (see Figure 2). The target stimu-
lus spanned a 3x3 arrangement of C1 unit spatial lo-
cations, creating 9 spatially distinct C1 locations. 2 or 3
of these spatial locations were chosen as inputs to the 52
unit (the spatial locations in the 3x3 map will be consid-
ered as: top left, top middle, top right, left middle, mid-
dle, right middle, lower left, lower middle, and lower
right). C1 unit outputs from all Gabor filter orientations
(in this case 4 orientations : 0°, 45°, 90°, and 135°) are
included as input from each spatial location. This re-
sults in S2 units that take either 8 or 12 C1 inputs (2 or 3

spatial locations x 4 Gabor orientations).

The units in the C2 layer then perform the max-
pooling operation over a spatial region of shifted S2
units with identical tuning properties. The size of the
spatial pooling region is set to match the invariance
properties of the V4 cell shown in Figure 6A of [18]. C2
units are directly compared to V4 cells. To complete the
model for object recognition, VIUs are tuned to object
views as in the original model [23]. The VTU layer will
only be used here for object recognition benchmarks
(see Appendix A.4). Further details of the model im-
plementation are described in Appendix A.1.

2.3 Response Characterization

The methodology used to characterize C2 units follows
the methodology used by Pasupathy & Connor to char-
acterize V4 cells [18]. The stimulus set is shown in Fig-
ure 2 and is reproduced using code kindly supplied by
Anitha Pasupathy. The construction of the stimulus sets
and the data analysis methods used to characterize re-
sponses in various tuning spaces are described in detail
in [18].

2.4 V4 Cell Raw Responses

The raw responses of V4 cells described in Figures 2, 4,
5, and 6 of [18] were extracted from digital images of
the Figures. Raw V4 cell responses were then scaled be-
tween 0 and 1. Correlation coefficients were computed
between a cell’s scaled response to the 366 stimuli and
the response of the model C2 unit to the same 366 stim-
uli to determine how well the model response matched
the cell response.

2.5 Tuning Spaces

In addition, model unit tuning was also characterized
using the same shape space analysis used by Pasupathy
& Connor [18]. Multi-dimensional Gaussian functions
were fit for each model unit in a shape space based on
the stimuli. The multi-dimensional functions used to
characterize model responses are: 2-D boundary con-
formation, 4-D boundary conformation, edge orienta-
tion, and edge orientation + contrast polarity.

The 2-D boundary conformation domain represents
the contour elements of each stimuli in a curvature x
angular position space. The 4-D boundary conforma-
tion domain not only contains the same curvature x an-
gular position space as the 2-D boundary conformation
space but also includes two adjacent curvature dimen-
sions (i.e. the central curvature is augmented by the cur-
vatures of the contour segments that are counterclock-
wise and clockwise adjacent).

An edge orientation shape space analysis was used
to determine if responses were selective for flat contour
segments at specific orientations. For this space each
contour segment of a stimulus was parameterized by
the angle between the tangent line and the horizontal.
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Figure 1: Schematic diagram of the implementation of the standard model of object recognition used in this paper,
which is an extension of the model described in [23]. S1 filters come in four different orientations (0°, 45°, 90°, 135°),
and each S2 unit is tuned to a unique combination of C1 afferents. C2 units perform max-pooling over 52 units of
the same feature. C2 units of each type provide inputs to the view-tuned units with tuning properties as found
in inferotemporal cortex [14, 23]. This study focuses on the units in the C2 layer that are analogous to cells in V4

recorded by Pasupathy and Connor [18].

The edge orientation space was represented by a Gaus-
sian function over the 180 degree range of edge orienta-
tions.

2.6 Stimulus Translation

Model units were tested for invariance to stimulus
translation. One optimal stimulus and one non-optimal
stimulus was tested over a grid of multiple positions.
The grid consisted of a 5x5 square centered on the re-
ceptive field with a translation of 0.5x S2 receptive field
radius for each location on the grid.

2.7 Feature Translation Test

An additional stimulus set was used from [18] that var-
ied the orientation and offset of a convex projection of a
tear dropped stimuli. This set was used to test the de-
pendence on angular position and orthogonal offset by
fitting the response to this stimulus set to a 1-D Gaus-
sian in either tuning space. The response to this stimu-
lus set was used by Pasupathy and Connor as evidence
for relative position tuning (a higher dependence on an-
gular position would indicate relative position tuning).
Further details are described in [18].

3 Results

3.1 Shape Tuning

Figure 3 shows the responses to the main stimulus set of
a V4 cell and a C2 unit. The V4 cell response is adapted
from Figure 4 of [18]. Both responses are linearly scaled
between 0 and 1. The C2 unit was tuned to the stimulus
shown in the lower left portion of the same figure and
takes inputs from upper right and middle right spatially
located C1 units. The V4 cell response is plotted against
the C2 unit response in the lower right portion of Figure
3.

There is a good correspondence between the V4 re-
sponse and the C2 response. Generally, both exhibit
high responses to stimuli with concave curvature to the
right of the object. Many subtleties of the responses
match, such as the many stimuli that exhibit approxi-
mately half maximum responses. These similarities re-
sult in a high correlation coefficient of 0.77 between the
V4 cell response and the C2 unit response. The C2 unit
also shows shape space tuning similar to the V4 cell.
Correlation coefficients of 0.67 in the 4-D boundary con-
formation tuning space and 0.32 in the edge orientation
space both agree with the correlation coefficients found
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Figure 2: Stimulus set used for computational simulations based on [18]. Each closed white shape represents one
individual stimulus. The background is uniform black and fills the receptive field.

for the V4 cell.

Other C2 units achieved good fits for the specific V4
cells shown in Figures 2 and 5 from [18]. A C2 unit
constructed with spatial locations of the C1 subunits
at middle, middle right and lower left and tuned to a
stimuli with a sharp convex projection to the lower left
showed a correlation coefficient of 0.67 to the V4 cell
in Figure 2 of [18]. This unit also exhibited a high cor-
relation in 4-D boundary conformation tuning space of
0.72 and a low correlation in edge orientation tuning
space of 0.32. Another C2 unit, constructed with C1 spa-
tial locations at upper right and lower left and tuned to
a stimuli with a sharp convex projection to the upper
right, showed a correlation coefficient of 0.70 to the V4
cell in Figure 5 of [18]. The 4-D boundary conformation
correlation for this unit was 0.75 and the edge orienta-
tion correlation was 0.28.

The results for the three C2 units described here are
summarized in Table 1.

3.2 Invariance

Figure 4 shows the responses to an optimal and non-
optimal stimuli for a V4 cell, adapted from Figure 6A of
[18], and a C2 unit over a 5x5 translation grid. The C2
unit shows high responses to the optimal stimuli over
a translation range that is comparable to the V4 cell.
For the non-optimal stimuli, the C2 unit shows low re-
sponse over all translations. This shows that stimulus
selectivity is preserved over translation for the C2 unit.

The degree of translation invariance is comparable to
the invariance range of the V4 cell.

V4 Cell

C2 Unit

Optimal
Stimulus

1.0

0.5

Non-optimal
Stimulus

) N

0.0

Figure 4: Translation response to an optimal and non-
optimal stimulus for a V4 cell and a C2 unit. Responses
are scaled between 0 and 1. (V4 cell response adapted
from Figure 6A of [18])

Figure 5 shows the responses of a V4 cell and an ex-
ample C2 unit to the feature translation stimulus set.
The C2 unit shows a response pattern that is nearly
identical to the V4 cell, adapted from Figure 6B of [18].
The C2 response is highly correlated with the angular
position of the convex extremity and poorly correlated
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and has been linearly scaled between 0 and 1. The darker the background the higher the response exhibited to that
stimulus. The tuned stimulus for the 52 inputs for this C2 unit is shown in the lower left. The V4 cell response is
plotted against the C2 unit response in the lower right.



[ | V4Cell | C2Unit || V4Cell | C2Unit | V4Cell | C2Unit |

Figure from [18] 4 | - 2 | - 5 | -
Correlation Coefficient 0.77 0.67 0.72

4-D Boundary 0.81 0.67 0.82 0.72 0.85 0.75
Edge Orientation 0.38 0.32 0.25 0.32 0.31 0.28

Table 1: Comparison of V4 cells to C2 units showing: correlation coefficient between V4 cell response and C2 unit
response to the main stimulus set, 4-D boundary correlation coefficient for the response to the main stimulus set,
and edge orientation correlation coefficient for the response to the main stimulus set.

Stimuli :

FrobL (T Léd 1.0

C2 Unit :

Figure 5: V4 cell and C2 unit response to the feature translation stimulus set. Responses are scaled between 0 and

1. V4 cell response is adapted from Figure 6B of [18].

with the orthogonal offset of the extremity (correlation
coefficients of 0.74 and 0.04, respectively) with nearly
identical results for the V4 cell (correlation coefficients
of 0.72 and 0.08, respectively).

4 Discussion

The ability of C2 units to model V4 cell responses sug-
gests an explanation of V4 cell tuning that is based on
a conjunction of complex V1 cell responses. The model
represents a biologically plausible mechanism that dis-
plays the same curvature and object centered tuning
found by Pasupathy and Connor in a subpopulation of
V4 cells. The model may be extended to predict the re-
sponses of these V4 cells to novel stimuli.

The standard model will also allow the integration
and comparison of findings across physiological V4
studies. An additional set of constraints is imposed by
each V4 study, limiting possible model connections and
selectivities. For example, a previous study has found
constraints on standard model units based on V4 find-
ings [12]. Through such studies, a unified model of V4
connectivity and selectivity can be achieved.

C2 model units demonstrate how a local feature com-
bination can create object-centered tuning (as defined
in [18]). C2 units demonstrate selectivity that is depen-
dent on the relative spatial locations of the C1 unit in-
puts combined at the S2 layer. The max-pooling oper-
ation between the S2 units and the C2 unit produces
tuning that is independent of the stimulus translation
and is thus independent of absolute receptive field po-
sition. As a result, C2 units demonstrate tuning for the
relative spatial position of their sub-features. These re-

sults indicate that invariance mechanisms at different
stages within the ventral stream may be closely associ-
ated with the tuning properties of V4 cells. For further
analysis see Appendix A.3.

The specific C2 units described here display selectiv-
ity to curvature segments and therefore, may approx-
imately be described as curvature filters. In much the
same way that simple V1 cells can be thought of as fil-
ters selective for orientation [15, 16, 26, 27], some V4
cells can be thought of as filters selective for curvature.
For example, C2 units show selectivity within a stimu-
lus set of polar, hyperbolic and Cartesian gratings. The
response of the C2 unit shown in Figure 3 was found for
a stimulus set of 40 polar, 20 hyperbolic and 30 Carte-
sian gratings (similar to stimuli used in [5]). The re-
sponse to the individual grating stimuli and the max-
imum response within each grating class is shown in
Figure 6. This type of grating selectivity is consistent
with reported V4 responses [5].

More generally, C2 units are tuned in a high dimen-
sional space of Cl1 filters. Thus, C2 units show high se-
lectivity to a wide range of stimuli that are not present
in the closed shape stimuli sets of [18] and are not eas-
ily described as containing curvature or contours. For
example, the natural image (from [13]) shown in Fig-
ure 7 elicits high responses from the C2 unit shown in
Figure 3. Figure 7 shows a natural image, the response
map of the C2 unit shifted over the image, and an im-
age patch that produces a high C2 response. The C2 re-
sponse to this image patch is 0.75 (the highest and low-
est responses in Figure 3 are 1.0 and 0.0, respectively).
Note that this image patch does not obviously contain
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Figure 6: Response pattern of a C2 unit to polar, hyperbolic and Cartesian gratings. Response is indicated by the
grey level of the stimulus and have been normalized between 0 and 1. The maximum response to each grating type
is shown to the right. The C2 unit used for these measurements is the same unit shown in Figure 3.

the curvature found to produce a high response for this
unit — and it is in any case not clear how to define cur-
vature for grey level images such as this one.

In conclusion, the standard model can be used to
quantitatively predict how the V4 cells studied by Pa-
supathy and Connor will respond to novel stimuli, such
as natural and arbitrary gray level images. These pre-
dictions, which may be incorrect, suggest a possible em-
pirical test, driven by the standard model, to further ex-
plore shape selectivity in area V4.
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Appendix

A.1 Model Units

The hierarchical structure of the standard model is
based on two computations to produce invariance and
selectivity. Invariance is achieved by max-pooling over
afferents with identical tuning properties but trans-
formed over the invariant dimension, i.e. scale or trans-
lation. For example, the output of a C1 cell taking in-
puts from S1: afferents with different spatial locations

]

is given as
C1 = max[S1y]
j

and produces translation invariance. Selectivity is
achieved using a template matching Gaussian transfer
function. For example, if each S2 unit combines n C1
afferents, the output of the S2 unit is

52 = [ e-tCtsrfar
=1

The parameter 1; is the C1 target and o is the standard
deviation of the Gaussian. The C1 targets and the stan-
dard deviation are set for each modeled V4 cell using
the following procedure.

For each given experimental V4 neuron, the stimulus
that elicits the highest response is selected as the target
stimulus for the model S2 unit intended to replicate the
experimental neuron’s tuning. A 3x3 grid of half over-
lapped C1 units at all 4 Gabor orientations is centered
on the target stimulus. To simplify the combinations of
C1 units considered at the S2 level, C1 units of different
orientation but the same spatial location are grouped
together. From this set of 9 unique spatial locations (a
3x3 grid with all 4 Gabor orientations at each location)
52 units are created that combine 2 or 3 spatial locations
at a time. This creates a total of 120 ((g) + (g)) possible
Cl1 afferent combinations. The standard deviation for
each S2 unit Gaussian is determined by minimizing the
mean squared error between the V4 cell response and
the C2 unit response.

Each C2 unit takes inputs from a 7x7 grid of S2 units
with the same tuning properties but shifted by half the
receptive field of the C1 units. This produces C2 units
with receptive fields of about 1.5 x S2 receptive field
size. The pooling range for the C2 units was set to
compare with the translation invariance of the V4 cell
shown in Figure 6A of [18].

In summary, the variable parameters involved in this
methodology are: the C2 pooling range (1), the tuned
stimulus (1), the standard deviation of the S2 Gaussian
(1), and the combination of C1 spatial locations (3). This
gives a total of 6 ‘degrees of freedom.” The C2 pooling
range is determined by the example V4 cell shown in
Figure 6A of [18]. The stimulus resulting in the highest
response for a given V4 cell is the tuned stimulus. An
optimal standard deviation of the S2 Gaussian is deter-
mined based on the given V4 response to the main stim-
ulus set for each of the C1 spatial locations considered
(2 or 3 locations from the 3x3 spatial grid). From this
population, the unit with the highest correlation to the
given V4 cell is selected.
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Figure 7: A natural image from [13] (left) and the response pattern of a C2 unit (middle) for the C2 unit shown in
Figure 3. The C2 unit’s receptive field is shifted over the image and its response is shown for each shift as a gray
level with high response represented as white pixels. An image patch (right) that elicits a C2 response of 0.75 is

magnified.

We would expect a wide variety of connections and
selectivities throughout the ventral stream leading to
V4. Because of computational limitations we are only
able to model a restricted subset of the possible connec-
tions. For example, S2 units in this paper rigidly com-
bine all 4 orientation filters from each spatial subfield.
If a slightly less rigid combination of C1 inputs is con-
sidered, the correspondence of C2 units to V4 cells can
be improved further. For example, a C2 unit that does
not combine all 4 orientation filters at each spatial loca-
tion can achieve a correlation coefficient of 0.84 over the
main stimulus set with the V4 cell shown in Figure 3.

A.2 Comparison to the Original Version of the Model

The parameters and connections of the units described
in A.1 and used throughout this paper were made as a
direct result of the work by Pasupathy and Connor in
[18]. These units differ from the units in the original
model [23] in three ways.

The first difference is that the original S2 units take
inputs from a 2x2 grid of C1 spatial locations with only
1 Gabor orientation at each spatial location. The units
used here take a subset of inputs from a 3x3 grid of C1
spatial locations with all 4 Gabor orientations at each
spatial location. The resulting S2 units are less rigid in
the combination of spatial subunits and have a more de-
scriptive representation of the input at each spatial loca-
tion.

The second difference is that the 52 unit Gaussian
transfer function [21] in the original model has a fixed
center (all C1 targets, y1;, are set to 1). The S2 units used
here learn the center of the Gaussian transfer function
from the tuned stimulus. As a result, these S2 units are
tuned to a specific pattern of C1 activation, while the
original 52 units are tuned to maximum firing of all C1
afferents.

The final difference is that the original C2 units have

a larger pooling range. The original pooling range was
simply set to match data from a population of V4 cells,
while the C2 pooling range used here is set to model
one individual V4 cell invariance. In general we expect
a spectrum of pooling ranges in the population of V4
cells.

A.3 Relative vs. Absolute Position Tuning

A simple simulation shows how relative position tun-
ing may arise from the max-pooling characteristics of
C2 units. A simple 3 layer network that takes inputs
from a 1-D space with 2 unique features was created
and its output was fit in either an absolute position
space (absolute position of each feature) or a relative po-
sition space (distance between the two features) using
multi-dimensional Gaussians. The 3 layer network con-
sists of a Cl-like layer that performs feature detection,
an S2-like layer that combines the two features at spe-
cific C1 spatial locations and a C2-like layer that pools
S2-like units over a max-pooling range.

Figure 8 shows the correlation coefficients to the ab-
solute position tuning and the relative position tuning
for the C2-like unit as the max-pooling range of the C2-
like unit varies from 1 to 21 S2-like units. For small
pooling ranges the absolute position tuning is more ef-
fective at describing the response of the network, while
at larger pooling ranges the relative position tuning be-
comes more effective at describing the response. These
findings can naturally be extended to the 2-D case of
vision.

This simulation indicates that relative position tuning
can be an effect of mechanisms that produce invariance,
such as max-pooling. For example, the relevance of rel-
ative position tuning for describing V4 cell responses
points to an invariance mechanism that maintains rel-
ative feature properties at the expense of absolute po-
sition properties. As the translation invariance range
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Figure 8: Correlation coefficients of relative and abso-
lute position tuning as a function of max-pooling range
for a simplified network. As the max-pooling range in-
creases, relative position tuning becomes more effective
at describing the network response.

increases for a V4 cell, relative position tuning should
become a better predictor of neuron response.

A.4 Paperclip Benchmark

A test is necessary to show that the extension of the
original model [23] used here produces quantitatively
similar selectivity and invariance at the VTU level. A
benchmark borrowed from [23] compares the single
VTU object recognition performance in both models
on a set of paperclip stimuli under rotation, scale and
translation transformations.

For the benchmark, a population of S2 units was con-
structed by selecting 3 C1 spatial locations from a 3x3
grid at a time (ignoring redundancies) and then ran-
domly sampling the center of the S2 Gaussian function
for each unit five times to achieve an S2 population of
250 units (50 spatial location groupings x 5 random
samples). The C2 pooling range was set to match the
range of the original model. Therefore, this benchmark
compares the original S2 units to the new S2 units pre-
sented in this paper. The results for the paperclip bench-
mark, shown in Figure 9, indicate that the model with
the new S2 units achieves a similar degree of rotation,
scale and translation invariance and selectivity against
distractors as the original model.
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